Making Large Cox's Proportional Hazard Models Tractable in Bayesian Networks

نویسندگان

  • Jidapa Kraisangka
  • Marek J. Druzdzel
چکیده

Cox’s proportional hazard (CPH) model is a statistical technique that captures the interaction between a set of risk factors and an effect variable. While the CPH model is popular in survival analysis, Bayesian networks offer an attractive alternative that is intuitive, general, theoretically sound, and avoids CPH model’s restrictive assumptions. Existing CPH models are a great source of existing knowledge that can be reused in Bayesian networks. The main problem with applying Bayesian networks to survival analysis is their exponential growth in complexity as the number of risk factors increases. It is not uncommon to see complex CPH models with as many as 20 risk factors. Our paper focuses on making large survival analysis models derived from the CPH model tractable in Bayesian networks. We evaluate the effect of two complexity reduction techniques: (1) parent divorcing, and (2) removing less important risk factors based on the accuracy of the resulting models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examining Effective Factors on Duration Time of Recommitment Using Cox's Proportional Hazard Model

Abstract. Recently, in most of scientific studies, the use of survival analysis is performed for examining duration time models.  One of the important applications of survival analysis is the study of recommitment crime in criminology which has not yet been considered in Iran.  So, with attention to the necessity and importance of predicting recommitment time and the analysis of duration model...

متن کامل

Point Prediction for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, we discuss dierent predictors of times to failure of units censored in multiple stages in a progressively censored  sample from proportional hazard rate models. The maximum likelihood predictors, best unbiased predictors and conditional median predictors are considered. We also consider Bayesian point predictors for the times to failure of units. A numerical example and a Monte C...

متن کامل

Sheppard's correction for grouping in Cox's proportional hazards model

Cox's proportional hazards model is often t to grouped survival data, i.e. occurrence/exposure data over given time intervals and covariate strata. We derive a Sheppard correction for the bias in the grouped data analogue of Cox's maximum partial likelihood estimator. This is done via a large sample theory in which the covariate strata and time intervals shrink as the sample size increases.

متن کامل

Prediction Based on Type-II Censored Coherent System Lifetime Data under a Proportional Reversed Hazard Rate Model

In this paper, we discuss the prediction problem based on censored coherent system lifetime data when the system structure is known and the component lifetime follows the proportional reversed hazard model. Different point and interval predictors based on classical and Bayesian approaches are derived. A numerical example is presented to illustrate the prediction methods used in this paper. Mont...

متن کامل

Additive risk models for survival data with high-dimensional covariates.

As a useful alternative to Cox's proportional hazard model, the additive risk model assumes that the hazard function is the sum of the baseline hazard function and the regression function of covariates. This article is concerned with estimation and prediction for the additive risk models with right censored survival data, especially when the dimension of the covariates is comparable to or large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016